WELCOME TO THE DEPARTMENT OF BIOCHEMISTRY & MOLECULAR BIOLOGY!

Biochemistry and Molecular Biology are sciences at the epicenter of modern biomedical research. Understanding basic biochemical pathways is key to gaining new knowledge for the prevention and combating of disease, allowing for the expansion of current boundaries in medicine and science. In addition to medical applications, molecular biology is indispensable for the development of tools implemented for environmental and bionanotechnology problems.

The Department of Biochemistry and Molecular Biology (BMB) at the University of Miami is committed to maintaining our discipline as a central science and strives for excellence by sustaining the current areas of strength, fostering interdisciplinary and clinical translational research, and expanding the research portfolio to evolving areas of inquiry and discovery. Our expertise in RNA biology, understanding DNA stability and repair, studying the biophysical nature of biomolecules, and gaining insight into cellular signaling pathways has been recently expanded by the arrival of researchers specialized in the design of natural and semi-synthetic biomolecules, as well as molecular-based devices that can be employed in translational medicine and other bionanotechnology applications. The commitment of the Miller School to increase growth in the basic sciences will continue to provide our Department with new and exciting opportunities to enhance our prominence in biomedical research.

A chief mission of our Department is to educate future generations of investigators and medical students to become critical thinkers and the leaders in their fields. The diverse composition of our Department in regards to research interests creates a unique and intellectually stimulating learning environment for students at the undergraduate, graduate, and postgraduate levels. We offer a host of courses to fulfill the curriculum to obtain a B.S. in Biochemistry, a MS and a Ph.D. in Biochemistry, as well as the basic science requirements for MD and MD/Ph.D. students. Our courses address the basic principles of biochemistry and molecular biology as well as the emerging science and future of the fields.

The Department serves the worldwide scientific community through leadership roles and active participation in national and international conferences, serving in study sections and on federal agency panels. Additionally, our Department’s faculty roster encompasses editors of journals and members of editorial boards, as well as board members of national and international governmental centers and members of advisory boards of companies in the private sector. Moreover, the Department is committed to serve the community by participating in a variety of outreach events to promote awareness of the importance of science and technology in relation to public health and the environment.

Our Department is also unique for hosting the internationally recognized annual Miami Winter Symposium, created by Professor William Whelan, the first leader and Chair of the Department. The Miami Winter Symposium is currently managed by Nature Publishing and features world-renowned speakers in emerging areas of science and technology. This event cements our Department’s goal of furthering education and discovery in biochemistry and molecular biology on an international level.

Sylvia Daunert, Ph.D.
Professor and Lucille P. Markey Chair
GRADUATE PROGRAM DIRECTOR’S WELCOME

Welcome to the BMB department at University of Miami Miller School of Medicine! We are so pleased that you have decided to join us. The BMB department is dedicated to excellence in basic research and teaching. The department is housed in the Gautier Building, which is located in the Research Quadrangle at the University of Miami, Miller School of Medicine. The aim of graduate education in the department of BMB is to prepare students for careers in biochemistry and molecular biology. The BMB graduate program provides the student with outstanding educational opportunities and a broad knowledge in the various aspects of modern biochemistry and molecular biology. Independent laboratory research is emphasized at all stages of the student’s career. The BMB students also participate in cutting-edge research on a variety of topics and publish their work in some of the best peer-reviewed journals in the world.

Stephen Lee, Ph.D.
Professor and Graduate Program Director

Executive Ph.D. in Biochemistry and Molecular Biology

In agreement with the overall mission of both the University of Miami and the Miller School of Medicine, the BMB Executive Ph.D. program strives to provide superior training in biochemical and molecular biological research and education to industrial and/or government laboratory professionals seeking a Ph.D. degree. After the successful completion of this program, individuals will have a unique perspective on fundamental biochemical problems, resulting in more career options and increasing the likelihood that they will make important contributions to scientific progress and society.

1. Bachelor’s and/or Master of Science degree in a science or related discipline
2. A cumulative grade point average of at least 3.0 is generally required; however, students with a lower GPA but compensatory credentials (such as extensive industrial/research experience) may be admitted into the program at the discretion of the Admissions Committee.
3. Graduate Record Examination (GRE) scores five years old or newer are required.
4. Three letters of recommendation
5. 1-2 page research proposal
6. Applicants who have not received a degree from a university in the United States must also satisfy the English proficiency requirements by submitting TOEFL scores.
7. A letter indicating support of time and resources from the employer will be needed prior to finalization of the admission.
8. A letter from the employer indicating research resource support
9. Application deadlines: We offer rolling admission however suggest a two month processing time prior to your intended start term.
Graduation Requirements for Executive BMB Ph.D. Program

The requirements for graduation include the following:

• Successful completion of 16 credit hours of required didactic courses at the graduate levels
• Successful completion of the Qualifying Examination
• Execution of an original research project facilitated by a dissertation committee that attests to research sufficiency (minimum 44 credit hours)
• Maximum of 12 credit hours for the spring and autumn sessions and 3 credit hours for the summer session
• Minimum of 6 semesters in the Program prior to sufficiency
• Submission and defense of a doctoral dissertation. Students are required to submit the dissertation document within 4 months after sufficiency.

A flow chart of steps involved in the program can be seen in the figure below.
Graduation Requirements.
Flow chart of steps involved in the program.

For the didactic phase of graduate training, students will participate in a set of courses chosen based on their prior experience and the research they perform in their industrial setting. Through these courses, the students obtain a broad, coherent background in basic and advanced aspects of biochemistry, molecular biology, structural biology, and cell biology. This material is supplemented with presentations at research journal clubs,
BMB COURSES

BMB 701 Journal Club – 1 credit each semester – total 4 Credits
BMB 705 Principles of Biochemistry and Molecular Biology
BMB 709 Advanced Biochemistry & Molecular Biology – 3 Credits
BMB 710 Advanced Topics in Biochemistry – 3 Credits
BMB 714 Molecular Genetics – 2 Credits
BMB 715 Structural Biology and Applications to Drug Discovery – 2 Credits
BMB 716 Analysis and Prediction of Gene Regulation and Protein Function – 2 Credits
BMB 719 Fundamentals of Epigenetics – 3 Credits
BMB 731 Special Work
BMB 830 Doctoral Dissertation
BMB 840 Doctoral Dissertation
BMB 850 Research in Residence

Participation in Research Work

The students will perform research at the institution where they are employed. They will have a co-mentor at their work places and a Ph.D. dissertation mentor from the BMB department. This mentor selection will be based on the research interests of the student.

Distance Learning Platform

The courses in the program will be taught through the distance learning platform, Blackboard. The lectures will be streamed through Skype or Blackboard Collaborate technology. Lectures will also be recorded.

Discussion Boards

Discussion boards will be hosted through Blackboard and will be moderated by teaching assistants. The discussion board will allow students to participate and ask questions.

Assignments

Assignments will be posted in the online classroom in Blackboard. Student will need to contact their instructor if they have questions regarding an assignment.

Course Descriptions

The BMB graduate program operating Committee assists each entering student in tailoring a program to match his or her interests. First year students take courses in a core curriculum taught by the faculties from the basic science departments. Courses are taught not only by formal lectures but also as seminars and informal discussions.
The BMB graduate program’s curriculum is designed to provide broad knowledge in the various aspects of molecular biology and biochemistry in addition to intensive training in certain specialized areas of research according to the student's interests.

Participation in Research Work

- **BMB 701 Journal Club**
- **BMB 705 Biochemical Science Seminar**
- **BMB 709 Advanced Biochemistry & Molecular Biology**
- **BMB 710 Advanced Topics in Biochemistry**
- **BMB 714 Molecular Genetics**
- **BMB 715 Structural Biology and Applications to Drug Discovery**
- **BMB 716 Analysis and Prediction of Gene Regulation and Protein Function**
- **BMB 719 Fundamentals of Epigenetics – 3 Credits**
- **BMB 731 Special Work**
- **BMB 830 Doctoral Dissertation**
- **BMB 840 Doctoral Dissertation**
- **BMB 850 Research in Residence**

1. **BMB 701 Journal Club**
 All registered BMB graduate students must participate in the Research Journal Club/Seminar. Junior students are required to critically review published paper(s) of their choice and describe in detail the findings described therein. Senior students are required to present their research finding in an open forum.

2. **BMB 705 Principles of Biochemistry and Molecular Biology**
 The biochemical composition, structure, and cellular metabolism of proteins, carbohydrates, lipids, and nucleic acids are rigorously described, emphasizing problem solving strategies required of biomedical field.

3. **BMB 709 Advanced Biochemistry & Molecular Biology**
 This course is offered every fall. This course brings the student to the forefront of research in biochemistry, molecular biology, and molecular genetics. The course covers several fundamental and advanced topics in biochemistry through lectures. Based on this experience, students are required to propose experimental approaches to biological problems and defend them.
4. **BMB 710 Advanced Topics in Biochemistry**
 This course is offered by various faculty members in the department on a rotating basis depending upon their expertise. For example, an advanced topic course in bionanotechnology and biosensing offered by Dr. Deo covers these topics through lectures. Another advanced course topic taught by Dr. Zhang is DNA repair.

5. **BMB 714 Molecular Genetics**
 This course deals with fundamental genetic concepts and their application to biomedical research. The objective is to provide students with the tools of molecular genetics and an understanding of how genetic principles apply to organisms at various levels of complexity. The course is divided into two parts, with an exam following each module. The first module is devoted to fundamental genetic mechanisms including complementation, recombination, suppression, and gene regulation as established by experiments with bacteria and bacteriophages. The second module deals with genetic mechanisms in eukaryotic systems including yeast, mice, and humans. Problem solving is emphasized in homework and exams. Since the focus is on understanding the biological consequences of underlying genetic mechanisms, this course will provide valuable insights for students interested in molecular mechanisms encountered in such diverse areas of biomedical research as molecular biology, microbiology, cell biology, cancer biology, pharmacology, and human genomics.

6. **BMB 715 Structural Biology and Applications to Drug Discovery**
 This course provides an introduction to structural biology and illustrates how understanding the relationship between structure and function of biological macromolecules drives drug discovery. The course is taught in three parts, with the first covering experimental and computational tools of structural biology: X-ray crystallography, cryo-electron microscopy and molecular modeling. The second part of the course will look at two examples demonstrating where structural biology has influenced drug design – traditional enzyme inhibitor type drugs and channel blocker drugs. The final part of this course will look at structures of nucleic acid (DNA and RNA) binding proteins and how they inform drug discovery.

7. **BMB 716 Analysis and Prediction of Gene Regulation and Protein Function**
 This course covers bioinformatics with a focus on the use of tools and biological databases to better understand gene regulation and protein function. Students will carry out a term project involving analysis and functional prediction of a set of uncharacterized E. coli genes and their encoded proteins.
8. BMB 719 Fundamentals of Epigenetics
The influence of nutrition on gene expression through modification of DNA and proteins in chromatin is described (i.e., epigenetics). Also, genetic variations, as well as the influence of bacterial flora of the digestive tract, are considered with respect to abilities to metabolize various dietary components. Students learn how to gather information about course topics and present their findings.

9. BMB 731 Special Work
Independent study as assigned by mentor.

10. BMB 830 Doctoral Dissertation
Required for all Ph.D. candidates. The student will enroll for credits as determined by the Office of Graduate Studies but not more than a total of 12 each for Spring and Fall, and no more than 3 for Summer. If a student has A) passed the qualifying exam and (B) is engaged in an assistantship, he/she may still take the maximum allowable credits.

11. BMB 840 Doctoral Dissertation (Post Candidacy)
Required for all Ph.D. candidates. The student will enroll for credits as determined by the Office of Graduate Studies but not more than a total of 12 each for Spring and Fall, and no more than 3 for Summer.

12. BMB 850 Doctoral Dissertation
Used to establish research in residence for the Ph.D., after the student has been enrolled for the permissible cumulative total in appropriate doctoral research. A minimum of 1 credit will granted for BMB 750. The student may be regarded as full-time research in residence as determined by the Dean of the Graduate School.

A minimum of 44 research credits must be obtained in 830, 840, or 850 while enrolled in the Executive Ph.D. Program.

Program Administration

Graduate Program Director

The progress of the student will be monitored by the GPD in collaboration with the Dissertation Committee of each student. The GPD, with help from the Graduate Program Coordinator, will organize all other activities stipulated in the program and required for progress of the students.

Graduate Program Director: Stephen Lee, Ph.D. Email: stephenlee@med.miami.edu

Associate Program Director: Feng Gong, Ph.D. Email: FGong@med.miami.edu
Graduate Program Manager
The BMB Graduate Program Coordinator helps with the admission process, functioning of the program, ensuring that students attend courses, complete assignments on time, and perform course evaluations. The Graduate Program Coordinator will ensure that records are properly entered, that students are credited for courses they have completed, and will also help address specific questions that may arise during the course of running the program.

Graduate Program Manager: Annalise Fernandez
Email: A.fernandez22@Miami.edu

BMB Ph.D. Mentor
The student will select from the primary and secondary faculty members of the BMB department a mentor based on common research interests. The student will consult with the GPD in the mentor selection process. The BMB Ph.D. mentor will design a project jointly with the student’s industrial co-mentor. At the discretion of the Program Director, the Ph.D. mentor can be outside BMB but must be appointed Graduate Faculty of Graduate Program at the UMMSM.

Industrial Scientist Ph.D. Co-Mentor
The industrial scientist who will serve as the co-mentor will be identified by the student at his/her workplace. The co-mentor will be a Ph.D. scientist who typically serves as a permanent supervisor to the student. The qualifications of the co-mentor will be evaluated by the GPD and the Admissions Committee prior to him/her serving on the student’s Dissertation Committee. The co-mentor will be involved in supervising the day-to-day research of the student and monitoring thesis progress. He/she will participate in the qualification exam, progress meetings, and the final defense exam of the student but will not have any right to vote on pass/fail. He/she will have weekly meetings with the student and also consult with the BMB mentor.

Qualifying Examination
In the second year, students will be evaluated on the basis of their academic performance and by completion of the Qualifying Examination (QE). Students will complete and submit the form entitled “Request for permission to take qualifying examination” for the approval of the Dissertation Committee. Please contact the Graduate Program Coordinator for this form. The format of this examination includes the definition of a novel research problem, the development of a proposal to address the stated problem, and a hypothesis. The significance, feasibility, and the relationship of the proposal to the literature will be important criteria for evaluation. The Qualifying Examination determines, in part, the student’s eligibility for admission to candidacy for the Ph.D. degree. The examination is designed to test the student’s basic knowledge of biochemistry and molecular biology, as well as assess the creativity and rationality of the proposed research design.

The Qualifying Examination is comprised of two parts:
1. Submission and oral presentation of dissertation proposal
2. Oral defense of the proposal
BMB Ph.D. Mentor

The Qualifying Examination is comprised of two parts:
1. Submission and oral presentation of dissertation proposal
2. Oral defense of the proposal

Thesis Proposal:
Students should submit a 6- or 12-page NIH style grant proposal on their thesis research topic. The proposal should include:

1. **Face Page**: Face page should include Name, Title of Proposal, Mentor, Dissertation Committee Members, Date of Oral Qualifying Exam, and MENTOR SIGNATURE stating that the document was written entirely by the student.

2. **Abstract**: State the broad, long-term objectives and goals of the research proposal, making reference to the health relatedness of the project (if such exists). Describe concisely the research design and methods for achieving these goals. (250 words)

3. **Specific Aims**: State the specific purpose(s) of the research proposal, the hypotheses to be tested and significance. (One page only)

4. **Background, Significance and Novelty**: Provide the background to the proposal. State concisely the importance and novelty of the research described in this application by relating the specific aims to broad, long-term objectives. (Two-three pages)

5. **Preliminary Results**: Provide the preliminary data that support your hypothesis. (One-two pages)

6. **Research Design, Methods and Expected Outcome**: Provide a description of the research design of the experiments proposed and the procedures to be used to accomplish the specific aims. Normally, this section is laid out in the order of the specific aims. For each specific aim, describe the proposed experiments including controls. Describe the major experimental techniques and methodologies you plan to use. Do not provide detailed descriptions of standard models. Describe the rationale for the choice of methods as well as potential problems or limitations. Explain how problems and limitations will be dealt with for each specific aim. Discuss the anticipated results of the proposed experiments (include alternative possibilities), and how they will be interpreted. How will the anticipated results support or disprove your hypothesis? Include any statistical methods by which the data will be analyzed. You may want to include expected outcomes and a tentative time table for the proposed experiments. (Five-seven pages)
7. **Literature Citation:** Insert these at the end of the research proposal. Each citation MUST include names of all authors, the complete title, book or journal, volume number, page numbers (beginning and end), and year of publication. The citations are not part of the twelve page limit.

The proposal should be submitted to the student’s dissertation committee, BMB Graduate Program Director and Coordinator two weeks prior to the oral examination. The proposal presentation and oral examination is the student’s defense of the proposal and normally lasts from two to three hours. The grading of the qualifying exam is equally weighted between the written research proposal, presentation and the student’s oral defense, and is pass/fail. In order to be admitted to candidacy, the student should maintain a grade point average of 3.0 or better and must pass the qualifying examination. All BMB students should bring the qualifying/proposal form to the meeting for committee members to sign along with signed data verification form. Please contact the Graduate Program Coordinator for these forms.

Admission to Ph.D. Candidacy

To be admitted to candidacy students must have completed all of the following:

1. Maintain a grade point average of 3.0 or better in courses.
2. Be accepted by a program faculty member as a dissertation student.
3. Complete required course work
4. Pass the qualifying exam

Students must be admitted to candidacy for the Ph.D. in a semester prior to the one in which the degree will be awarded. The graduate program coordinator will file the form requesting admission to candidacy for the student. To receive the Ph.D. degree, a student must submit a formal application to the Graduate School prior to the posted deadline date, in the semester in which the degree will be awarded. The student should adhere strictly to required guidelines, which are available at: http://www.miami.edu/grad/.

Upon meeting all requirements and passing the qualifying exam, admission to candidacy for the degree is approved. Students must be admitted to candidacy before the dissertation defense is scheduled. Students may not receive the degree in the same semester or summer session in which he/she is admitted to candidacy.

Dissertation Committee

The Dissertation Committee will be specific for each student depending upon the topic of their dissertation work. The Dissertation Committee will consist of a total of four voting members. Three faculty members will be from the Department of Biochemistry and Molecular Biology and will include the student’s mentor from the BMB graduate faculty, one faculty member will come from a UM department outside of the BMB department.
The dissertation committee will also include the industrial scientist acting as co-mentor who will not have any voting rights pertaining to pass/fail on student exams. The latter will be selected by the student from the industry where the student is employed and approved as the student’s co-mentor as described in the Program Administration section. At least one member from the committee must hold a primary appointment in the BMB department. The UM student mentor will be a member of the primary or secondary faculty of the BMB department.

In the case that the Ph.D. Mentor is outside BMB, the Chair of the Dissertation Committee must be a Primary Faculty of BMB.

In addition to the student dissertation committee members selected by the student, the dissertation proposal examination committee will comprise two additional BMB Graduate Faculty members. The Operating Committee will select the two additional committee members. The two additional members after the first meeting will not further participate on the dissertation committee. The Qualifying Examination Committee will consist of five members. Please complete and submit the form entitled “request for permission to take qualifying examination” for the approval of your thesis committee. Please contact the Graduate Program Coordinator for the form.

The Dissertation Committee will conduct the qualifying exam, proposal approval, progress meetings, sufficiency meeting, dissertation thesis approval, and dissertation defense. The Dissertation Committee will meet every six months to evaluate the student’s progress. The student will write a progress report and present their data to the Dissertation Committee every six months. The Dissertation Committee members will be chosen such that they do not have any financial conflict of interest with the student’s industry or project. Intellectual property stemming from the collaborative UM-industrial project will be handled as per the university regulations. The policy regarding intellectual property is outlined in the University of Miami Sponsored Program Policies and Procedures (http://www6.miami.edu/controller/policies/text/c7.htm). The policy letter will be drafted in collaboration with Innovation and the general counsel of the University. This policy letter will be sent to the company sponsoring the student and a designate of the company will be required to sign on this letter prior to the processing of the admission.

Submission of the Dissertation
As per University of Miami rules, no student gains the right to be recommended for the submitting a Dissertation or be recommended for the degree simply by fulfilling credits or other requirement. This right is reserved to the student’s committee. Changes of committee members must be approved by the Graduate Program Director and sent to the Graduate School.
Progress Reports and Meetings

The students are required to meet with their Dissertation Committee every six months and present progress reports both in written and oral format. The progress report should be a 3-page summary of the work performed. The student should highlight recent research progress and any changes made to the project since the Qualifying Examination and previous progress meeting. The proposal should be submitted to the committee one week prior to the meeting. **It is the responsibility of the student to ensure that the dissertation proposal and progress meetings are held every six months (or less if stipulated by the Dissertation Committee).** Students are required to bring the progress evaluation form to the meeting for committee members to sign along with the signed data verification form. Please contact the Graduate Program Coordinator for these forms. In addition, students are required to present their research in the mini-symposium organized on a yearly basis.

If the Dissertation Committee determines that the student is not making satisfactory progress or that there is a consistent lack of progress, the Dissertation Committee will take appropriate action. If the student’s progress remains unsatisfactory for more than one six months, the Dissertation Committee must decide whether the student should change his/her research project. Consistent lack of progress for more than a year may result in dismissal from the BMB graduate program.

The students who are in the BMB program for 5 years or more will meet with their Dissertation Committee every three months. The Committee will make a determination whether or not adequate progress is being made.

The mentor can visit the industry where the student will perform the work to monitor the research work if he/she wishes. The expenses will be paid by the program to avoid any conflict of interest. The company must grant the mentor permission to visit the facility.

Sufficiency Requirements

1. Grade point average of 3.0 or better.
2. Completion of 16 credit hours of required courses.
3. Successful completion of research work with at least one first author published and/or accepted manuscript (not review article) or filing of a patent. However, the student’s Dissertation Committee can waive this rule if the Committee feels that the student has done scholarly work and made significant progress.
4. Students have up to 4 months to write and defend the dissertation work starting from sufficiency date.
Submitting the Dissertation to the Graduate School

In order for the student to graduate, the Graduate School must accept the dissertation. The Office of the Graduate School has a set of extremely detailed rules regarding the format of dissertations. The student should obtain these guidelines when beginning to write the dissertation. Note that the Graduate School sets extremely detailed guidelines. http://www.miami.edu/index.php/graduate_school/current_students/electronic_theses_dissertations/.

Dissertation Defense

Students are required to present a public seminar where they can formally defend their written document in front of Dissertation Committee and external examiner. The Graduate School requires that all members of the Dissertation Committee and external examiner must attend the seminar, private defense, and sign off on the final document. In the case of emergencies the Graduate Program Director can consult with the Mentor to allow a single individual to be absent from the defense.

The defense involves the review of all experimental data and the entire written thesis. During the defense, the Dissertation Committee Chair is responsible for allotting appropriate time for questions by all participants. Students are expected to understand the significance of their findings, display adequate knowledge of the relevant literature and know the theory and limitations of methods employed. Candidates must demonstrate the ability to independently design, execute and interpret original experiments. The thesis work and the oral defense must be approved by all committee members. This group is empowered to pass or fail a student’s dissertation document and the oral defense. The signed forms will be submitted to the Graduate School unless revisions are required. If revisions are necessary, signatures will be held until the document is revised and approved.

Graduation

The academic calendar has specific deadlines for graduation. It is the student’s responsibility to be aware of the exact dates and to coordinate the dissertation defense accordingly after submission of a final thesis is accepted by the Graduate School. Questions regarding deadlines, graduation fees and other requirements or regulations concerning the details of preparation and submission of the thesis dissertation should be directed to:

Dissertation Editor: Doreen Yamamoto
Tel: (305) 284-4154
Email: dyamamoto@miami.edu
Transfer of Credit Policy
Transfer of graduate credit from another institution will not be made until the student has completed a like amount of credit at the University of Miami, and the transfer has been approved by the supervisory committee, the Program Director and the Dean of the Graduate School. Credit transferred is subject to the same regency rules as all other credit counted toward the degree, and is also subject to examination by the program. An official transcript of work to be transferred must be on file in the Graduate School. Credits that pertain to or have been counted toward another unrelated degree cannot be transferred. Credits for graduate and medical courses can be transferred at the discretion of the Director.

The transfer of credits, the award of credits for students holding a Master’s degree in related fields, or the waiver of course requirement without the award of credits must be approved by the Executive Ph.D. Program Director and the Senior Associate Dean of Graduate & Postdoctoral Studies.

Time to Completion Policy
All work in the Industrial Ph.D. program must be completed within five years of the time of admission to graduate work. The minimum time in the program is two and one-half (2½) years, nine (9) semesters, from the time of the first registration to the actual defense of the Dissertation. Exceptions may be granted by the Dean of Graduate School at the request of the Graduate Program Director.

Plagiarism
Plagiarism is explicitly outlawed at University of Miami Miller School of Medicine (UMMSM). The BMB graduate program will not tolerate Plagiarism. Students who are found to have plagiarized may be asked to withdraw from the program. Plagiarism is not always easy to define; students who are unsure whether a particular practice is acceptable are urged to discuss the issue with the faculty instructor or mentor.

Dismissal and Appeals
Students can be dismissed by the Program for academic or professional reasons. Decisions on dismissal are made by majority vote of the Operating Committee. To appeal a major programmatic decision (e.g., dismissal, denial of degree, termination of stipend), students should first present their reasons for appealing to the Graduate Program Director and Operating Committee. This appeal will be given a fair and impartial hearing followed by a decision made by majority vote. If the student remains dissatisfied with the result of this appeal, the student may appeal the program decision, in writing, to the Associate Dean for Graduate Studies, within 30 days of the program's final decision.
Decisions by the Associate Dean are appealable to the Dean of the Graduate School through the filing of a formal Graduate School Grievance. http://www.miami.edu/index.php/graduate_school/current_students/

Leave of Absence

Individuals requiring periods of time away from their research training experience must seek approval from their Program Director for a leave of absence. At the beginning of a leave of absence, the student must submit a written request which includes the reason for the request as well as the date the leave will begin and end. This request, once approved by the Program Director, should be submitted to the Office of Graduate Studies which will seek the necessary approval from the Associate Dean.

E-mail

UM provides free e-mail accounts to all students; please be sure to read your e-mail daily. If you do not have e-mail, please contact the Graduate Program Coordinator to get University Access. E-mail is an important avenue of communication between the Biochemistry and Molecular Biology Program and the graduate student.

Important Graduate Forms

Please contact the Graduate Program Coordinator for the important forms below.

1. **Student Assessment Rubric** (For Qualifying Exam, Progress Report, Doctoral Dissertation)
2. **Request for permission to take qualifying examination**
3. **Qualifying Exam Verification**
4. **Qualifying Request**
5. **Admission to Candidacy**
6. **Certificate of Defense Approval for Doctoral Dissertation**
7. **Electronic Thesis and Dissertation Checklist**
8. **Ph.D. Signature page**
9. **BMB Graduate Exit Survey**
10. **BMB Graduate Alumni Profile**

Important Numbers

Graduate Program Director
Dr. Stephen Lee
(305) 243-5177

Associate Director
Dr. Feng Gong
(305) 243-9270

Program Manager
Annalise Fernandez
(305) 243-8474

Graduate School
Dissertation Editor, Doreen Yamamoto
(305) 284-4154
Student Accounts Services
The Office of Student Account Services processes all financial information of a student's account during their enrollment at the University of Miami. Staff members are available to assist and answer inquiries by phone (305) 284-6430 Option 5, email (saccounts@miami.edu), or in person. Hours: 8:30am – 5:00pm

IMPORTANT NOTE:
The policies contained herein are subject to change without notice.